


# Hydraulic cylinders type CKA - for potentially explosive atmospheres

ATEX - ISO 6020-2 - nominal pressure 16 MPa (160 bar) - max 25 MPa (250 bar)



## **1** ATEX CERTIFICATION

| Cylinder type                    | Group | Equipment<br>category | Gas/dust<br>group | Temperature<br>class (1) | Zone      |  |
|----------------------------------|-------|-----------------------|-------------------|--------------------------|-----------|--|
| СКА                              | Ш     | 2 GD                  | II C/III C        | T85°C(T6) / T135 °C(T4)  | 1,2,21,22 |  |
| CKA + ex-proof                   |       | 2 G                   | IIΒ               | T6/T5                    | 1,2       |  |
| rod position transducer (2)      |       | 2 D                   | III C             | T85°C/T100°C             | 21,22     |  |
| CKA + ex-proof proximity sensors | II    | 3 G                   | П                 | T4                       | 2         |  |

(1) Temperature class depends to the max fluid temperature and sealing system (2) The rod position transducer is certified to work with explosive gas (cat. 2G) and dust (cat. 2D)

| СКА                                                                        | Μ       | / 10 | 0 - | - 5 | 0 / | 22                  | / 2 | 2 * | 0500 | ) . | - S | ] [ | 3   | 0                  | 1      | ]-[           | Α            | -            | B1E3X1Z3                                          | **                              |
|----------------------------------------------------------------------------|---------|------|-----|-----|-----|---------------------|-----|-----|------|-----|-----|-----|-----|--------------------|--------|---------------|--------------|--------------|---------------------------------------------------|---------------------------------|
| cylinder series                                                            |         |      |     |     |     | L                   |     |     |      |     | L   |     |     |                    |        |               |              |              |                                                   | Series number (2)               |
| KA to ATEX 2014/34/EU                                                      |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | Heads' configurat                                 |                                 |
| imensions to ISO 6020 - 2                                                  |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | Oil ports positions                               |                                 |
| x-proof position transduc                                                  | er      |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | B* = front head                                   |                                 |
| ee section 5                                                               |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | X* = rear head                                    | nts positions, to be ente       |
| = omit if not requested                                                    |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              |                                                   | ishioning are selected          |
| I = Digital magnetostrictive                                               |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | E* = front head                                   |                                 |
| corporated subplate (1)                                                    |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | <pre>Z* = rear head * = selected posit</pre>      | on(1,2,3,or,4)                  |
| <ul> <li>= omit if subplate is not r</li> </ul>                            | reque   | sted |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              | L            | * = 3elected posit                                | 011 (1, 2, 3 01 4)              |
| <b>0</b> = size 06<br><b>0</b> = size 10                                   |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | ons (1)(3):                                       |                                 |
| <b>0</b> = size 16                                                         |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               | Roo          |              | end<br>emale thread                               |                                 |
| <b>10</b> = size 25                                                        |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               | <b>G</b> =   | =lig         | ght female thread                                 |                                 |
|                                                                            |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | ght male thread                                   |                                 |
| <b>3ore size (1)</b><br>rom <b>25</b> to <b>200</b> mm                     |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               | <b>D</b> =   | =fro         | ont oversized oil po                              |                                 |
|                                                                            |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | ear oversized oil por                             |                                 |
| Rod diameter (1)                                                           |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | oof proximity sensoi<br>ont sensor                | s, see section 8                |
| rom <b>12</b> to <b>140</b> mm                                             |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               | -            |              | ear sensor                                        |                                 |
|                                                                            |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | reatment<br>ickel and chrome pl                   | atina                           |
| Second rod diameter for do                                                 |         | •    | )   |     |     |                     |     |     |      |     |     |     |     |                    |        |               | Τ =          | =in          | duction surface harde                             | ening and chrome platir         |
| rom <b>12</b> to <b>140</b> mm, omit for s                                 | single  | roa  |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              | eeds<br>ont air bleed                             |                                 |
| Stroke (1)                                                                 |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               | W =          | =re          | ear air bleed                                     |                                 |
| up to <b>5000</b> mm ( <b>4000</b> mm fo                                   | or CK/  | AM ) |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               | Dra          | aini<br>- ro | ing<br>od side draining                           |                                 |
|                                                                            |         |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        | L             |              | -10          |                                                   |                                 |
|                                                                            |         |      |     |     | _   |                     | ~~  |     |      |     |     |     |     |                    | Se     | alin          | ig sy        | yst          | tem, see section 7                                |                                 |
| lounting style (1)                                                         |         |      |     |     | к   | EF. I               | so  |     |      |     |     |     |     |                    |        |               |              |              |                                                   | tatic and dynamic sealir        |
| = fixed clevis                                                             |         |      |     |     |     | P1 (4<br>P3 (4      |     |     |      |     |     |     |     |                    | 2:     | = (Fł<br>- (N | KM +<br>BB - | ⊦P<br>⊥F     | TFE) very low friction<br>PTFE) very low friction | and high temperatures           |
| <b>D</b> = fixed eye<br>= feet                                             |         |      |     |     | M   | 52 (*<br>S2         | +)  |     |      |     |     |     |     |                    |        |               |              |              |                                                   | single acting - pushing         |
| <b>G</b> = front trunnion<br><b>H</b> = rear trunnion                      |         |      |     |     |     | T1<br>T2 <b>(</b> 4 | n   |     |      |     |     |     |     |                    | 7 :    | = (N          | BR -         | + P          | TFE) very low friction                            | n, single acting - pullir       |
| = intermediate trunnion                                                    |         |      |     |     | Μ   | T4 (ŝ               |     |     |      |     |     |     |     | Spac               | cer (  | 1)            |              |              |                                                   |                                 |
| <ul> <li>I = front flange</li> <li>P = rear flange</li> </ul>              |         |      |     |     |     | E5<br>E6 (4         | 1)  |     |      |     |     |     |     | <b>0</b> = r       | one    | 2             | = 50         | m            | m <b>4</b> = 100 mm <b>6</b>                      | = 150 mm <b>8</b> = 200 m       |
| 5 = fixed eye + spherical b                                                | bearing | g    |     |     | Μ   | P5 (4               |     |     |      |     |     |     | Cue | hionir             | na (1  | 、             |              |              |                                                   |                                 |
| <ul> <li>threaded hole+tie rods</li> <li>rear tie rods extended</li> </ul> | s exter | ided |     |     |     | X7<br>X2            |     |     |      |     |     |     |     | none               | ·9 ( · | ,             |              |              |                                                   |                                 |
| V = both end tie rods exter                                                | nded    |      |     |     |     | X1                  |     |     |      |     |     |     |     | t adju             |        | le            |              |              | low adjustable                                    | Fast fixed                      |
| 4 = basic execution                                                        | 1       |      |     |     | М   | -<br>X3             |     |     |      |     |     |     |     | rear or<br>front o |        |               |              |              | = rear only<br>= front only                       | 7 = rear only<br>8 = front only |
| front tie rods extended                                                    | 1       |      |     |     |     |                     |     |     |      |     |     |     |     |                    |        |               |              |              |                                                   |                                 |

For details see table B137

(3) To be entered in alphabetical order

(4) Not available for double rod

(5) XV dimension must be indicated in the model code

CKA cylinders are derived from standard CK (tab.B137) with certification according to ATEX 2014/34/EU. They are designed to limit the external surface temperature, according to the certified class, to avoid the self-ignition of the explosive mixtures potentially present in the environment. CKAM servocylinders are equipped with ex-proof built-in digital magnetostrictive position transducer, ATEX certified.

- · Optional ex-proof proximity sensors, ATEX certified
- Bore sizes from 25 to 200 mm
- Up to 3 rod diameters per bore
- Strokes up to 5000 mm
- Single or double rod
- 15 standard mounting styles
- 5 seals options
- · Attachments for rods and mounting styles, see tab. B500

#### For cylinder's dimensions and options see tab B.137

For cylinder's choice and sizing criteria see tab. B015

### 3 CERTIFICATION

In the following are resumed the cylinders marking according to Atex certification. Reference norm ISO 80079-36, ISÓ 80079-37

#### II 2/2G Ex h IIC T6, T4 Gb (gas) II 2/2D Ex h IIIC T85°C. T135°C Db (dust) **GROUP II, Atex**

- ш = Group II for surface plants 2/2 = High protection (equipment category)
- = For gas, vapours G
- п = For dust
- Ex = Equipment for explosive atmospheres
- IIC = Gas group
- IIIC = Dust group

T85°C/T135°C = Surface temperature class for dust, see section 6 T6/T4 = Surface temperature class for gas, see section 6

**Gb/Db** = EPL Equipment group

#### 4 INSTALLATION NOTES

#### Before installation and start-up refer to tab. X600

- The max surface temperature indicated in the nameplate must be lower than the following values:

#### GAS - 80% of gas ignition temperature

DUST - max value between dust ignition temperature - 75°C and 2/3 of dust ignition temperature

- The ignition temperature of the fluid must be 50°C greater than the maximum surface temperature indicated in the nameplate
- The cylinder must be grounded using the threaded hole on the rear head, evidenced by the nameplate with ground symbol. The hydraulic cylinder must be put at the same electric potential of the machine

#### 5 EX-PROOF ROD POSITION TRANSDUCER

CODE: M

CKA cylinders are available with "Balluff" Ex-proof rod position transducer, ATEX certified to II 1/2 G Ex d IIC T6/T5 Ga/Gb for gas and II 2D Ex tb IIIC T85°C/T100°C Db IP 67 -40°C Ta +65°C (T6) -40°C Ta +80°C (T5) for dust. Ex-proof transducers meet the requirements of the following european standard documentations:

II 1/2 G Ex d IIC T6/T5 Ga/Gb

EN 60079-0 EN 60079-1 EN 60079-26

II 2D Ex tb IIIC T85°C/T100°C Db IP 67 EN 61241-0 EN 61241-0/AA EN 61241-1

The transducer housing is made in AISI 303

For dimensions and details, contact our technical office.

For certification and start-up refer to the user's guide included in the supply The transducer is available with SIL certified on request

#### 6 MAIN CHARACTERISTICS AND FLUID REQUIREMENTS

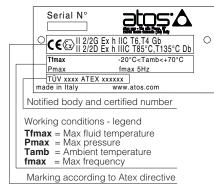
| Ambient temperature           | -20÷+70°C; -40 ÷ +65°C for <b>CKAM</b>                                                      |
|-------------------------------|---------------------------------------------------------------------------------------------|
| Fluid temperature             | -20÷+70°C ( <b>T6</b> ); -20÷+120°C ( <b>T4</b> ) for seals type <b>2</b> (*)               |
| Max surface temperature       | $\leq$ +85 °C ( <b>T6</b> ); $\leq$ +135 °C ( <b>T4</b> ) for seals type <b>2</b> (*)       |
| Max working pressure          | 16 MPa (160 bar)                                                                            |
| Max pressure                  | 25 MPa (250 bar)                                                                            |
| Max frequency                 | 5 Hz                                                                                        |
| Max speed (see section 7)     | 1 m/s (seals type 2, 4, 6, 7); 0,5 m/s (seals type 1)                                       |
| Recommended viscosity         | 15 ÷ 100 mm²/s                                                                              |
| Max fluid contamination level | ISO4406 20/18/15 NAS1638 class 9, see also filter<br>section at www.atos.com or KTF catalog |

Note: (\*) Cylinders with seals type 2 may also be certified T6 limiting the max fluid temperature to 70°C

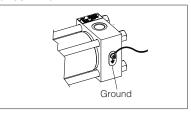
#### 7 SEALING SYSTEM FEATURES

The sealing system must be choosen according to the working conditions of the system: speed, operating frequencies, fluid type and temperature. Additional verifications about minimum in/out rod speed ratio, static and dynamic sealing friction are warmly suggested, see **tab. B015** When single acting seals are selected (types **6** and **7**), the not pressurized cylinder's chamber must be connected to the tank. Contact our technical office for the compatibility with other fluids not mentioned below and specify type and composition

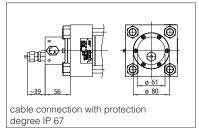
| Sealing | Material              | Features                                             | Max<br>speed | Fluid<br>temperature | Fluids compatibility                                                                                          | ISO Standards for seals |            |  |
|---------|-----------------------|------------------------------------------------------|--------------|----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|------------|--|
| system  | Material              | reatures                                             | [m/s] range  |                      | r laids compatibility                                                                                         | Piston                  | Rod        |  |
| 1       | NBR +<br>POLYURETHANE | high static<br>and dynamic sealing                   | 0.5          | -20°C to 70°C        | Mineral oils HH, HL, HLP, HLP-D, HM, HV                                                                       | ISO 7425/1              | ISO 5597/1 |  |
| 2       | FKM + PTFE            | very low friction<br>and high temperatures           | 1            | -20°C to 120°C       | Mineral oils HH, HL, HLP, HLP-D, HM, HV,<br>fire resistance fluids HFA, HFB, HFD-U,HFD-R                      | ISO 7425/1              | ISO 7425/2 |  |
| 4       | NBR + PTFE            | very low friction<br>and high speeds                 | 1            | -20°C to 70°C        | Mineral oils HH, HL, HLP, HLP-D, HM, HV, MIL-H-5606<br>fire resistance fluids HFA, HFC (water max 45%), HFD-U | ISO 7425/1              | ISO 7425/2 |  |
| 6 - 7   | NBR + PTFE            | very low friction<br>single acting - pushing/pulling |              | -20°C to 70°C        | Mineral oils HH, HL, HLP, HLP-D, HM, HV,<br>fire resistance fluids HFA, HFC (water max 45%), HFD-U            | ISO 7425/1              | ISO 7425/2 |  |


#### 8 EX-PROOF PROXIMITY SENSORS

CODES: R = front sensor; S = rear sensor


CKA cylinders are available with ex-proof proximity sensors, ATEX certified to **Ex II 3G Ex nA II T4** -25≤Ta≤80°C. They meet the requirements of the following european standard documentations: EN 60079-0, EN 60079-15.

Their functioning is based on the variation of the magnetic field, generated by the sensor itself, when the cushioning piston enters on its influence area, causing a change of state (on/off) of the sensors. The sensor housing is made in stainless steel. For dimensions and details, contact our technical office.


For certification and start-up refer to the user's guide included in the supply



#### GROUNDING



#### CKAM WITH ROD POSITION TRANSDUCER



CKA cylinders are suitable for operation with mineral oils with or without additives (HH, HL, HLP, HLP-D, HM, HV), fire resistant fluids (HFA oil in water emulsion, 90-95% water and 5-10% oil; **HFB** water in oil emulsion, 40% water; **HFC** water glycol, max 45% water) and synthetic fluids (HFD-U organic esters, HFD-R phosphate esters) depending to the sealing system.

#### SENSORS TECHNICAL DATA

| Ambient temperature | -25 ÷ +80°C |
|---------------------|-------------|
| Nominal voltage     | 24 VDC      |
| Operating voltage   | 10 ÷ 30 VDC |
| Max load            | 200 mA      |
| Repeatability       | <5%         |
| Protection degree   | IP 68       |
| Max frequency       | 1000 Hz     |
| Max pressure        | 25 MPa      |